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INSTABILITY OF UNIFORM FLOW 

MICHAEL RENARDY 
Department of Mathematics, Virginia Tech, Blacksburg, VA 240614123, U. S. A. 

SUMMARY 
We consider uniform flow of a Newtonian fluid transverse to a domain bounded by parallel planes. We 
investigate the possibility of introducing instabilities in this flow by the choice of inflow and outflow 
conditions. Some instabilities of this kind are found. 
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INTRODUCTION 

Problems in computational fluid mechanics frequently involve ‘open’ boundaries (i.e. boundaries 
traversed by the fluid), which are introduced by truncation of the flow domain. In order to solve 
the equations governing the flow, it is necessary to impose boundary conditions at these open 
boundaries. These boundary conditions are not provided by the physics of the problem but are 
a mathematical artefact. Many possible choices of inflow and outflow conditions exist. A 
systematic mathematical theory of flow problems with open boundaries has yet to be developed. 
In this paper we investigate one aspect of the problem, namely the possibility of introducing 
artificial flow instabilities by the choice of open boundary conditions. We shall consider a flow 
which clearly has no instabilities in the absence of open boundaries, namely uniform flow. The 
inflow and outflow boundaries are given by two parallel planes which are transverse to the 
direction of the flow. While this problem is not too typical of applications, it has the essential 
feature of open boundaries and is easily accessible to analysis. We shall consider the following 
types of boundary conditions at the open boundaries: 

(1) ‘natural’ boundary conditions 
(2) vorticity and pressure conditions 
(3) traction conditions upstream and velocity conditions downstream 
(4) Dirichlet conditions upstream and ‘absorbing’ conditions downstream. 

The flow domain is the strip (0, 1) x R and we rescale all the variables in the Navier-Stokes 

(1) 
We have written the equations of motion in their natural conservation form, since we shall 
consider boundary conditions which are ‘natural’ for this form of the equation. We are interested 
in stability of a uniform flow in the x-direction, i.e. u = ( U ,  0), p = 0. When (1) is linearized for this 
flow, the following equations result: 

The first three cases will be seen to exhibit instabilities. 

equations so that all constants can be set to unity. Thus the governing equations are 

C = div[Vu + ( V U ) ~  - pl - uuT], div u = 0. 

4 + uu, = u,, + uyy - P x ,  u, + uv, = Ox, + uyy - Py, u, + uy = 0. (2) 
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Here u and u denote the components of the perturbation to the velocity. 
To complete the problem, one needs boundary conditions at  the inflow boundary x = 0 and 

the outflow boundary x = 1. If conditions of prescribed velocity are imposed at both boundaries, 
then it is very easy to show by energy estimates that the uniform flow is stable. However, there 
are many other choices for which energy estimates do not seem to be useful in determining the 
stability. 

NATURAL BOUNDARY CONDITIONS 

The first possibility which we shall consider is natural boundary conditions. For equations (1) 
these are 2ux - p - uz = ux + u), - uu = 0. For the linearized problem this reduces to 

2u, - p - 2uu = 0, 0, + uy - uu = 0. (3) 

We can simplify our equations by introducing a streamfunction: u = - $ y ,  u = I ) ~ .  This 
transforms (2) to the equation 

A+, + UA$x = AA+. (4) 

After some calculation we find that the boundary conditions are transformed to 

-*xxx - WXYY + *x, + w x x  + 2 w y y  = 0, *xx - *yy - u*x = 0. (5 )  

Consider now the ansatz $(x, y) = exp(ax + iay). Being harmonic, this function satisfies (4) and 
a simple calculation shows that ( 5 )  is also satisfied if a = U/2. Hence there is a neutrally stable 
mode at this wave number. 

For general a equation (4) can be satisfied by the ansatz 

$(x, y, t) = $1 exp(ax + iay + It) + exp( -ax + iay + It) 
+ $ 3  exp(Blx + iay + It) + +4 exp(B,x + iay + At), (6) 

where 

u f J[u’ + *a2 + A)] 
2 B 1 . 2  = (7) 

By inserting (6) into the boundary conditions (5 ) ,  we find that the determinant of the following 
4 x 4 matrix must be zero: 

2 a,, = y i  + a2  - Uy,, 

u2,  = (y? + a’ - ~y,)exp(y,), 

a3, = -7; + 3a2yi + Ay,  + ~ y , ‘  - 2ua2,  

u4, = ( - y !  + 3a2yi + Iyi  + ~ y ?  - 2~a’)exp(y,). 

Here 

y 1  = a ,  y2 = -a, 73 = 81, Y4 = P 2 .  (9) 

We can now proceed numerically as follows. We fix I 2 0 and a and then vary U from zero 
until the determinant of the above matrix changes sign. Where it does, I is an eigenvalue. The 
calculations verify that for A = 0 the sign change occurs at U = 2a. If we pick 1 slightly positive, 
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the sign change is shifted to a slightly larger value of U .  This verifies that the flow is unstable 
to wave numbers less than U/2.  We note that although the neutrally stable mode for a = U / 2  
is irrotational (A$ = 0), the unstable modes for a < U / 2  are not irrotational. 

The boundary conditions studied above seem to have been used only sporadically in numerical 
calculations, even though they are the natural boundary conditions when the Navier-Stokes 
equations are written in conservation form. Indeed, some other ‘natural’ conditions are used 
more commonly. One choice is to set the tractions equal to zero and omit the momentum 
transport terms in (3): 

(10) 

A numerical calculation analogous to that described above showed no instabilities for this case. 
Another common choice in numerical simulations is 

2ux - p = 0, ox + uy = 0. 

u, - p = 0, ox = 0, (1 1) 

which is mathematically ‘natural’ for Au - Vp. Again a numerical calculation as above shows 
no evidence of instability. The procedure of looking for sign changes of the determinant would 
only detect instabilities from real eigenvalues. We also computed some complex eigenvalues 
using Newton’s method and found only eigenvalues with negative real parts. It appears therefore 
that the boundary conditions (10) or (11) do not cause instability. It is interesting that the 
conditions which are ‘natural’ from the physical point of view lead to instabilities while more 
naive choices do not. 

VORTICITY AND PRESSURE CONDITIONS 

As our next example let us consider conditions of prescribed vorticity and pressure. In this case 
we need to consider (4) with boundary conditions 

*xx + * y y  = -*xxx - * x y y  + *XI  + w x x  = 0. 
We can find the explicit solution 

$ = exp( - ax + iay + vat),  (13) 

which clearly grows exponentially with time. The instability is even worse than the one above, 
since the growth rate tends to infinity as a + co, i.e. the problem is actually ill-posed. If we 
change the condition of prescribed pressure to prescribed normal traction, 2ux - p = 0, then 
our second boundary condition becomes 

-*xx* - 3*xyy + $ X I  + wx, = 0 

$ = exp(-ax + iay + Uat - 2a’t). 

(14) 

and our explicit solution is changed to 

(15) 

Now we no longer have unlimited growth for large a but we still have instability for a -= U/2 .  

TRACTION UPSTREAM AND VELOCITY DOWNSTREAM 

Let us consider (4) with Dirichlet conditions downstream: 

+ = J I x = O  a t x = l .  
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At the upstream boundary we prescribe the following boundary conditions: 

-$xxx - 3$xyy + $XI  + w x x  = 0, $xx- $ y y  + E*X = 0. (17) 

For E = 0 this gives us traction boundary conditions upstream and velocity conditions down- 
stream. Such a choice of boundary conditions is generally regarded as ‘bad’ by practitioners of 
computational fluid mechanics. Indeed, we shall see that for any positive E, however small, we 
get instability if U is large enough. The critical U tends to infinity as E + O ,  but only 
logarithmically. Thus even though the case E = 0 appears to be linearly stable, it should be 
viewed as a marginal case which can easily be pushed over the edge. The situation is reminiscent 
of the well-known case of plane Couette flow, which is known to be linearly stable at all Reynolds 
numbers but is not observed to be stable in practice. 

We specifically study the case where t j  does not depend on y,  i.e. the perturbation to the flow 
is purely in the y-direction. Then (4) and the first equation of (17) lead to 

(18) 

which needs to be solved together with the boundary conditions (16) and the second condition 
in (17). For neutral stability we again look for time-independent solutions, + I  = 0. In that case 
(18) is solved by tjX = c1 + c2 exp(Ux) and by inserting into the boundary conditions, we find the 
condition 

$X, + w x x  = $xxx, 

E exp(U) = LI + E, (19) 

i.e. 

That is, if we choose a positive E > 0, then instability occurs for large enough U ,  with a critical 
value which grows logarithmically as E approaches zero. In contrast, we note that for negative 
U (i.e. velocity conditions upstream and traction conditions downstream) this instability will not 
occur if E c 1. 

Even if we set E = 0, the flow is only theoretically stable. In (18) let +x = y, so that our equation 
becomes 

and for E = 0 we have the boundary conditions 

It can be shown that this problem is stable, but the least stable eigenvalue behaves like 
U z  exp(- U )  for large U .  Thus the decay rate becomes extremely small even for moderate values 
of U .  It will hence take an extremely long time before solutions decay, and the decay rate tells 
us nothing about the behaviour at times of order one. Indeed, it is not hard to see how solutions 
will behave when U is large. If we ignore the term y x x  in (21) and the downstream boundary 
condition, then the solution is given by 
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Here y o  is the initial condition at t = 0. If U is large, (23) will be the dominant contribution to 
the solution, except for a boundary layer downstream which is needed to accommodate the 
boundary condition there. Hence a large gradient will form near the downstream boundary. The 
time it takes for this large gradient to form is only of order 1/U, while the time it takes for the 
solution to decay to zero is of order exp(U)/U2. 

Note that there is no instability or near instability if velocity conditions are prescribed 
upstream and tractions downstream. To see this, we simply multiply equations (2) by the velocity 
and integrate over the flow domain. After an integration by parts this yields the energy estimate 

a 
1uI2 dV= - U jro luI2 dS - In IVU + ( V U ) ~ ~ ~  dV, 

where 0 is the flow region and I-, is the downstream boundary. From this, stability is immediate. 
In the situation considered above, i.e. velocities downstream and tractions upstream, the first 
term on the right of (24) is replaced by plus the integral over the upstream boundary and hence 
the energy equation allows no conclusion about stability. 

ABSORBING CONDITIONS DOWNSTREAM 

Finally we consider Dirichlet conditions upstream, 

u = u = o ,  (25) 
and the following conditions downstream: 

u, + uu, = u, + UU, = 0. (26) 

If we think of waves travelling with speed U at high Reynolds number, then this means that 
the outflow boundary is absorbing these waves. We thus expect a stabilizing influence and we 
shall demonstrate that the flow is indeed stable. We write the Navier-Stokes equations in the 
form 

U, + UU, = AU - Vp, (27) 
multiply by u, + Uu, and integrate. We find 

I d  a 
ax 

(u, + Uu,)’ dV = - IVuI2 dV - f jn U - lVu12 dV - U 

I d  
IVuI2 dS - - U U: dS. (28) 

Jr, 
Here Ti and To are the inflow and outflow boundaries respectively. We conclude that jn (Vu1’ dV 
decreases monotonically in time and the flow is stable. 

CONCLUSIONS 

As we have seen in the examples above, the possibility exists that the choice of boundary 
conditions at open boundaries can lead to artificial flow instabilities. One may expect similar 
phenomena to occur in more complicated flow situations which are more typical of applications. 
The effect on flow stability ought to be an important factor in a rational approach towards 
characterizing ‘good’ versus ‘bad’ choices for conditions at open boundaries. 
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